
A new matrix method for the Casimir operators of the Lie algebras  and 

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2005 J. Phys. A: Math. Gen. 38 4187

(http://iopscience.iop.org/0305-4470/38/19/009)

Download details:

IP Address: 171.66.16.66

The article was downloaded on 02/06/2010 at 20:12

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0305-4470/38/19
http://iopscience.iop.org/0305-4470
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL

J. Phys. A: Math. Gen. 38 (2005) 4187–4208 doi:10.1088/0305-4470/38/19/009

A new matrix method for the Casimir operators of the
Lie algebras wsp(N , R) and Isp(2N , R)

Rutwig Campoamor-Stursberg

Dpto. Geometrı́a y Topologı́a, Fac. CC. Matemáticas, Universidad Complutense de Madrid,
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Abstract
A method is given to determine the Casimir operators of the perfect Lie
algebras wsp(N, R) = sp(2N, R)

−→⊕ �ω1 ⊕�0hN and the inhomogeneous Lie
algebras Isp(2N, R) in terms of polynomials associated with a parametrized
(2N + 1) × (2N + 1)-matrix. For the inhomogeneous symplectic algebras
this matrix is shown to be associated to a faithful representation. We further
analyse the invariants for the extended Schrödinger algebra Ŝ(N) in (N + 1)

dimensions, which arises naturally as a subalgebra of wsp(N, R). The method
is extended to other classes of Lie algebras, and some applications to the
missing label problem are given.

PACS number: 02.20.Sv

1. Introduction

Symplectic Lie algebras constitute a quite interesting class of algebras for physical
applications, due to their relation to some fundamental constructions. As is known, the
Hamiltonian of the most general system of linear oscillators is given by

H = αijpipj + βijpiqj + γ ij qiqj , 1 � i, j � N, (1)

where q = {qi} and p = {pi} are the usual configuration and momentum space variables. It is
straightforward to verify that the observables of degree 2 in p and q generate the real Lie algebra
sp(2N, R), while those of degree � 1 span the Heisenberg Lie algebra hN . This constitutes
evidence that both algebras, as well as the semidirect product wsp(N, R) of sp(2N, R) and
hN can be of interest for the study of internal symmetry schemes of particles. In this context,
the case N = 3 has been shown to play a distinguished role in the theory of nuclear collective
motions [1, 2]. On the other hand, we find that the unitary algebra u(N) (and therefore the
su(N) algebra) is naturally embedded into sp(2N, R) as the centralizer of the element

H ′ = 1
2 (pipi + qiqi). (2)
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Thus we also have a relation between symplectic groups and those applied to nuclear physics.
Other important applications of the symplectic groups are, for example, the derivation of the
dynamical noninvariance groups SO(4, 2) for hydrogen-like atoms in three dimensions from
the group Sp(8, R), providing an additional approach to the classical method [3]. Another
extremely important Lie algebra closely related to symplectic algebras, and worthy of analysis
in this context, is the invariance algebra Ŝ(N) of the Schrödinger equation in N-space and
1-time dimensions [4], which arises naturally as a subalgebra of the semidirect product
wsp(N, R).

It is therefore natural that the Casimir operators of these algebras are relevant for the
different problems analysed, not only as an effective tool in the representation theory of these
structures, but also for the obtention of quantum numbers and the labelling problems. In
previous articles [5, 6] we have developed various methods to determine the Casimir operators
of Lie algebras using determinants. These methods, applicable to Lie algebras having only a
small number of invariants, are based either on the existence of certain extensions of the algebra
or on the structure of the Levi part. The next logical step is trying to extend such methods
for Lie algebras having an arbitrary number of invariants. The idea is to obtain a natural
generalization of the matrix method introduced by Gel’fand in [7] for the simple Lie algebras.
In this work we develop a method that enables us to obtain the Casimir operators of the
Lie algebras wsp(N, R) and Isp(2N, R) from a determinant associated with a parametrized
matrix obtained from an extension of the generic matrix of the standard representation of
the symplectic algebra sp(2N, R). This method provides the invariants directly, without the
necessity of studying the corresponding enveloping algebras or taking contractions of Lie
algebras, and is extremely easy to apply even for high values of N. For special cases we point
out the relation of the matrix used and the existence of faithful representations of the algebra.
As applications, it is shown that similar arguments hold for other Lie algebras such as the
extended Schrödinger algebra Ŝ(N), the Poincaré algebra and some of its contractions. We
finally give an application to the missing label problem, where the missing label operators for
certain subalgebra chains can be obtained directly by means of determinants.

The most widely used procedure to determine the (generalized) Casimir invariants of
a Lie algebra g is the analytical method, which turns out to be more practical than the
traditional method of analysing the centre of the universal enveloping algebra U(g) of g. This
is particularly convenient in the study of completely integrable Hamiltonian systems, where
Casimir operators in the classical sense do not have to exist, and where the transcendental
invariant functions are not interpretable in terms of U(g).

Given a basis {X1, . . . , Xn} of the Lie algebra g and the structure tensor
{
Ck

ij

}
, g can be

realized in the space C∞(g∗) by means of differential operators:

X̂i = −Ck
ij xk

∂

∂xj

, (3)

where [Xi,Xj ] = Ck
ijXk (1 � i < j � n) and {x1, . . . , xn} is a dual basis of {X1, . . . , Xn}.

In this context, an analytic function F ∈ C∞(g∗) is called an invariant of g if and only if it is
a solution of the system of PDEs:

{X̂iF = 0, 1 � i � n}. (4)

Actually, for polynomials F in the commuting variables {x1, . . . , xn}, X̂iF is nothing but the
action of the generator Xi of g on F. It is well known that polynomials invariant by this action,
i.e., satisfying X̂iF = 0, correspond to elements in the centre Z(U(g)) of the enveloping
algebra of g [8]. The explicit linear isomorphism between the set of polynomial solutions of
(4) and Z(U(g)) is obtained from the symmetrization map S. For any monomial xα1xα2 · · · xαp
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of degree p define

S
(
xα1xα2 · · · xαp

)
:= 1

p!

∑
σ∈Sp

Xασ(1)
Xασ(2)

· · · Xασ(p)
, (5)

where Sp is the symmetric group in p letters. Then the image of a polynomial F(x1, . . . , xn) is
easily obtained by linear extension of (5). Nonpolynomial solutions of system (4) are usually
called ‘generalized Casimir invariants’. The cardinal N (g) of a maximal set of functionally
independent solutions (in terms of the brackets of the algebra g over a given basis) is easily
obtained from the classical criteria for PDEs:

N (g) := dim g − rank
(
Ck

ij xk

)
1�i<j�dim g

, (6)

where A(g) := (
Ck

ij xk

)
is the matrix which represents the commutator table of g over the basis

{X1, . . . , Xn}. Evidently this quantity constitutes an invariant of the algebra. We remark that
N (g) can also be obtained from the Maurer–Cartan equations of the Lie group [9], which is
of interest in the context of the missing label problem and the classification of subalgebras,
which will be discussed in section 7.

As mentioned above, real symplectic Lie algebras can easily be realized in terms of
creation and annihilation operators [10]: consider the linear operators ai, a

†
j (i, j = 1, . . . , N)

satisfying the commutation relations[
ai, a

†
j

] = δij I (7)

[ai, aj ] = [
a
†
i , a

†
j

] = 0. (8)

Considering the operators
{
a
†
i aj , a

†
i a

†
j , aiaj

}
, we generate the real symplectic Lie algebra

sp(2N, R). The brackets are easily obtained from (7) and (8). For practical purposes, we
label the basis in the following form:

Xi,j = a
†
i aj , 1 � i, j � N (9)

X−i,j = a
†
i a

†
j (10)

Xi,−j = aiaj . (11)

The brackets of sp(2N, R) can then be combined in a unique equation:

[Xi,j , Xk,l] = δjkXil − δilXkj + εiεj δj,−lXk,−i − εiεj δi,−kX−j,l , (12)

where −N � i, j, k, l � N, εi = sgn(i) and

Xi,j + εiεjX−j,−i = 0. (13)

While this last basis is useful for the study of realizations of symplectic Lie algebras [11],
the boson basis is more convenient for studying the semidirect products with Heisenberg
algebras and their contractions [12–15]. In fact, the operators ai, a

†
i transform as follows by

the generators
{
a
†
i aj , a

†
i a

†
j , aiaj

}
of sp(2N, R):[

a
†
i aj , a

†
k

] = δjka
†
i (14)[

a
†
i aj , ak

] = −δikaj (15)[
a
†
i a

†
j , ak

] = −δjka
†
i − δika

†
j (16)[

aiaj , a
†
k

] = δkiaj + δkj ai . (17)

With the labelling Pi = a
†
i ,Qi = ai for i = 1, . . . , N , we immediately see that (14)–(17) is

nothing but the standard 2n-dimensional representation �ω1 of sp(2N, R). Equations (7)–(8)
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and (12)–(17) are the brackets for the semidirect product wsp(N, R) of the symplectic algebra
sp(2N, R) with the (2N + 1)-dimensional Heisenberg–Weyl Lie algebra hN over the basis
{Xi,j , Pk,Qk, I} [12]. This type of construction for semidirect products is typical for the study
of shift operator contractions and coherent state realisations of Lie algebras [12, 16].

Explicit expressions for the Casimir operators of semisimple Lie algebras have been
proposed by many authors [17, 18], and even for nonsemisimple algebras there exist various
procedures [5–7, 12, 19]. We recall in this section a quite economical method to determine
the invariants of wsp(2N, R) over the boson basis, and based on the classical matrix methods.

Proposition 1. Let N � 2. Then the Casimir operators C2k of sp(2N, R) are given by the
coefficients of the characteristic polynomial

|A − T I d2N | = T 2N +
N∑

k=1

C2kT
2N−2k, (18)

where

A =




x1,1 · · · x1,N −x−1,1 · · · −x−1,N

...
...

...
...

xN,1 · · · xN,N −x−1,N · · · −x−N,N

x1,−1 · · · x1,−N −x1,1 · · · −xN,1

...
...

...
...

x1,−N · · · xN,−N −x1,N · · · −xN,N




. (19)

Moreover deg C2k = 2k for k = 1, . . . , N .

The proof follows easily from the classical formulae of Perelomov and Popov [20], or
using the trace method introduced by Gruber and O’Raifeartaigh in [18]. Observe that in fact
the matrix A can be rewritten as

A =
N∑

i=1

xi,j�ω1(Xi,j ), (20)

where �ω1(Xi,j ) is the matrix corresponding to the generator Xi,j by the standard representation
�ω1 of sp(2N, R).

2. The Lie algebras wsp(N , R)

As we have seen, the Lie algebras wsp(N, R) = sp(2N, R)
−→⊕ �ω1 ⊕�0hN follow naturally from

the boson realization of sp(2N, R). This fact has important consequences for the applications
of these algebras and their irreducible representations, such as the theory of nuclear collective
motions [2].

Among the various methods to obtain the Casimir operators of the semidirect products
wsp(N, R), Quesne introduced in [12] a quite practical procedure, which has been shown
recently to hold also for exceptional Lie algebras [13]. The main idea is to obtain a semisimple
Lie algebra g′ isomorphic to sp(2N, R) in the enveloping algebra U of wsp(N, R) such that
its generators commute with the Heisenberg algebra. More generally, the Quesne theorem
states that given a semidirect product g = s

−→⊕ RhN of a simple Lie algebra s spanned by
{X1, . . . , Xr} and a Heisenberg algebra spanned by {Y1, . . . , Y2N, I}, then there exist elements
X′

i = XiI + αjiki Yji
Yki

in the enveloping algebra U(g) of g such that {X′
1, . . . , X

′
n} span a

simple algebra s′ � s and such that [X′
i , Yj ] = 0 for all i, j . Therefore the insertion of these
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new generators X′
i into the formulae for the Casimir operators of s gives the invariants sought.

Moreover, the number of independent Casimir operators of g is given by N (g) = rank(s) + 1
[12].

Starting from this method, and combining it with proposition 1, we obtain a more
direct matrix method for the computation of the invariants of wsp(2N, R) from a certain
polynomial associated with a (2N + 1) × (2N + 1)-matrix obtained from the standard
representation. Before proving the general case, we illustrate the procedure with the Lie algebra
wsp(2, R) = sp(4, R)

−→⊕ �w1 ⊕�0h2 over the basis {Xi,j , Pk,Qk, I}. This algebra clearly has
three invariants, one of them corresponding to the generator I of the centre. Using the insertion
method, the operators X′

i,j = Xi,j I − PiQj ,X
′
−i,j = X−i,j I − PiPj ,X

′
i,−j = Xi,−j I − QiQj

(i, j = 1, 2) generate1 a copy of sp(4, R) in the enveloping algebra of wsp(2, R). It is
straightforward to verify that these operators commute with both Pk and Qk . As a consequence,
the replacement of the variables2 xi,j in (19) by the new variables x ′

i,j will provide us
with Casimir invariants of wsp(2, R). To obtain these invariants we have to compute the
characteristic polynomial of the matrix

M2 =




zx1,1 − p1q1 zx1,2 − p1q2 −zx−1,1 + p2
1 −zx−1,2 + p1p2

zx2,1 − p2q1 zx2,2 − p2q2 −zx−1,2 + p1p2 −zx−2,2 + p2
2

zx1,−1 − q2
1 zx1,−2 − q1q2 −zx1,1 + p1q1 −zx2,1 + p2q1

zx1,−2 − q1q2 zx2,−2 − q2
2 −zx1,2 + p1q2 −zx2,2 + p2q2


 . (21)

The determinant |M2 − T I d4| can be decomposed into a sum of 16 determinants, 11 of which
are zero because the second summand in each column of the matrix (21) is a multiple of the
column vector (p1, p2, q1, q2)

t . With this reduction, we obtain:

|M2 − T I d4| =

∣∣∣∣∣∣∣∣
−p1q1 zx1,2 −zx−1,1 −zx−1,2

−p2q1 zx2,2 − T −zx−1,2 −zx−2,2

−q2
1 zx1,−2 −zx1,1 − T −zx2,1

−q1q2 zx2,−2 −zx1,2 −zx2,2 − T

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
zx1,1 − T zx1,2 −zx−1,1 p1p2

zx2,1 zx2,2 − T −zx−1,2 p2
2

zx1,−1 zx1,−2 −zx1,1 − T p2q1

zx1,−2 zx2,−2 −zx1,2 p2q2

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
zx1,1 − T zx1,2 p2

1 −zx−1,2

zx2,1 zx2,2 − T p1p2 −zx−2,2

zx1,−1 zx1,−2 p1q1 −zx2,1

zx1,−2 zx2,−2 p1q2 −zx2,2 − T

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
zx1,1 − T −p1q2 −zx−1,1 −zx−1,2

zx2,1 −p2q2 −zx−1,2 −zx−2,2

zx1,−1 −q1q2 −zx1,1 − T −zx2,1

zx1,−2 −q2
2 −zx1,2 −zx2,2 − T

∣∣∣∣∣∣∣∣

+

∣∣∣∣∣∣∣∣
zx1,1 − T zx1,2 −zx−1,1 −zx−1,2

zx2,1 zx2,2 − T −zx−1,2 −zx−2,2

zx1,−1 zx1,−2 −zx1,1 − T −zx2,1

zx1,−2 zx2,−2 −zx1,2 −zx2,2 − T

∣∣∣∣∣∣∣∣ . (22)

1 Depending on the basis chosen, the expression for the new generators also changes. The basis used here differs
slightly from that employed in [12].
2 In order to obtain homogeneous polynomials in the generators, we assign the variable z to the generator I of the
centre.
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A short calculation shows that this sum can be composed as a unique determinant, namely

1

T

∣∣∣∣∣∣∣∣∣∣

zx1,1 − T zx1,2 −zx−1,1 −zx−1,2 p1T

zx2,1 zx2,2 − T −zx−1,2 −zx−2,2 p2T

zx1,−1 zx1,−2 −zx1,1 − T −zx2,1 q1T

zx1,−2 zx2,−2 −zx1,2 −zx2,2 − T q2T

−q1 −q2 p1 p2 −T

∣∣∣∣∣∣∣∣∣∣
. (23)

Determinant (23) has the advantage of avoiding all zero summands of the decomposition of
(22), and is therefore more practical for computation purposes.

Repeating the same argument for the general case N � 2 leads to a determinant which
decomposes into a sum of 22N determinants of the same order, from which 22N − 2N − 1 are
identically zero. This shows that for large values of N the method of the copy of sp(2N, R)

in the enveloping algebra of the semidirect product is not the most economical to compute the
Casimir operators. The objective of this section is to prove that the reduction leading to the
unique determinant (23) can be extended to the general case.

Proposition 2. Let N � 2. Then the noncentral Casimir operators C2k+1 of wsp(2N, R) are
given by the coefficients of the polynomial

|B − T I d2N+1| = T 2N+1 +
N∑

k=1

z2k−1C2k+1T
2N+1−2k, (24)

where B is the (2N + 1) × (2N + 1)-matrix given by:

B =




zx1,1 · · · zx1,N −zx−1,1 · · · −zx−1,N p1T

...
...

...
...

...

zxN,1 · · · zxN,N −zx−1,N · · · −zx−N,N pNT

zx1,−1 · · · zx1,−N −zx1,1 · · · −zxN,1 q1T

...
...

...
...

...

zx1,−N · · · zxN,−N −zx1,N · · · −zxN,N qNT

−q1 · · · −qN p1 · · · pN 0




. (25)

Moreover deg C2k+1 = 2k + 1 for k = 0, . . . , N .

Proof. Since the Casimir operators of wsp(2N, R) are obtained by replacing the generators
of sp(2N, R) by new generators spanning a copy of the symplectic algebra in the enveloping
algebra into the matrix (19), the invariants are given by the following determinant:


 =∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zx1,1 − p1q1 − T · · · zx1,N − p1qN −zx−1,1 + p2
1 · · · −zx−1,N + p1pN

...
...

...
...

zxN,1 − pNq1 · · · zxN,N − pNqN − T −zx−1,N + p1q1 · · · −zx−N,N + p2
N

zx1,−1 − q2
1 · · · zx1,−N − q1qN −zx1,1 + p1q1 − T · · · −zxN,1 + pNq1

...
...

...
...

zx1,−N − q1qN · · · zxN,−N − q2
N −zx1,N + p1qN · · · −zxN,N + pNqN − T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(26)

Now this can be simplified using the elementary rules for determinants, and taking into account
that the second summand in each column of (26) is a multiple of (p1, . . . , pN, q1, . . . , qN)t ,



A new matrix method for the Casimir operators of the Lie algebras wsp(N, R) and Isp(2N, R) 4193


 reduces to:


 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zx1,1 − T · · · zx1,N −zx−1,1 · · · −zx−1,N

...
...

...
...

zxN,1 · · · zxN,N − T −zx−1,N · · · −zx−N,N

zx1,−1 · · · zx1,−N −zx1,1 − T · · · −zxN,1

...
...

...
...

zx1,−N · · · zxN,−N −zx1,N · · · −zxN,N − T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

N∑
j=1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zx1,1 − T · · · zx1,j−1 −p1qj zx1,j+1 · · · zx1,N −zx−1,1 · · · −zx−1,N

...
...

...
...

...
...

...

zxN,1 · · · zxN,j−1 −pNqj zxN,j+1 · · · zxN,N − T −zx−1,N · · · −zx−N,N

zx1,−1 · · · zx1,−j+1 −q1qj zx1,−j−1 · · · zx1,−N −zx1,1 − T · · · −zxN,1

...
...

...
...

...
...

...

zx1,−N · · · zxj−1,−N −qNqj zxj+1,−N · · · zxN,−N −zx1,N · · · −zxN,N − T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
+

N∑
j=1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zx1,1 − T · · · zx1,N −zx−1,1 · · · −zx−1,j−1 p1pj −zx−1,j+1 · · · −zx−1,N

...
...

...
...

...

zxN,1 · · · zxN,N − T −zx−1,N · · · −zx−N,j−1 pNpj −zx−N,j+1 · · · −zx−N,N

zx1,−1 · · · zx1,−N −zx1,1 − T · · · −zxj−1,1 q1pj −zxj+1,1 · · · −zxN,1

...
...

...
...

zx1,−N · · · zxN,−N −zx1,N · · · −zxj−1,N qNpj −zxj+1,N · · · −zxN,N − T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(27)

The structure of these determinants suggests that they can be obtained as minors of some
another determinant. Let us now consider the matrix B. The polynomial 
′ = |B − T I d2N+1|
is given by the determinant


′ =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zx1,1 − T · · · zx1,N −zx−1,1 · · · −zx−1,N p1T

...
...

...
...

...

zxN,1 · · · zxN,N − T −zx−1,N · · · −zx−N,N pNT

zx1,−1 · · · zx1,−N −zx1,1 − T · · · −zxN,1 q1T

...
...

...
...

...

zx1,−N · · · zxN,−N −zx1,N · · · −zxN,N − T qNT

−q1 · · · −qN p1 · · · pN −T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (28)

Expanding it along the last row, we decompose the determinant into:


′ = −T


|(B − T I d2N+1)2N+1,2N+1| +

N∑
j=1

(−1)2N+1+j qj |(B − T I d2N+1)2N+1,j |



+


 N∑

j=1

(−1)3N+1+jpj |(B − T I d2N+1)2N+1,N+j |

 T , (29)
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where (B − T I d2N+1)i,j is the minor of B − T I d2N+1 obtained by deleting the ith row and j th
column. Inserting the variable qj (respectively pj ) in the minor (B − T I d2N+1)2N+1,j

(respectively (B − T I d2N+1)2N+1,N+j ), we recover the summands of (27). Comparison of
the determinants of (26) and (28) shows that they are related as follows:


T + 
′ = 0. (30)
�

It is important to realize that the matrix B used depends on the variable T taken to evaluate
the determinant |B − T I d2N+1|. Therefore we cannot speak formally of the characteristic
polynomial of B, but of a polynomial closely related to it.

As illustrating examples, we consider the Lie algebras wsp(1, R) and wsp(2, R). The first
algebra has dimension 6 and two invariants, one of them being z, the variable corresponding
to the central generator I. The noncentral invariant is determined by evaluation of determinant
(28) for N = 1. We obtain the polynomial T 3 + zC3T , where

C3 = −zx−1,1x1,−1 + x−1,1q
2
1 + x1,−1p

2
1 − 2x1,1p1q1 + zx2

1,1. (31)

The symmetrization of C3 gives the corresponding Casimir operator

S(C3) =
(

X2
1,1 − X−1,1X1,−1 + X1,−1X−1,1

2

)
I+

(
X−1,1Q

2
1 + Q1X−1,1Q1 + Q2

1X−1,1
)

3

− (X1,1P1Q1 + Q1P1X1,1 + X1,1Q1P1 + P1Q1X1,1 + Q1X1,1P1 + P1X1,1Q1)

3

+

(
P 2

1 X1,−1 + X1,−1P
2
1 + P1X1,−1P1

)
3

. (32)

Observe, in particular, that the summand
(
X2

1,1 − X1,−1X−1,1+X−1,1X1,−1

2

)
corresponds to the

Casimir operator of the Levi part sp(2, R).
For the 15-dimensional Lie algebra wsp(2, R) we find three invariants (one central).

Applying (23) we get the polynomial T 5 +zC3T
3 +z3C5T , where C3 and C5 are homogeneous

polynomials of degrees 3 and 5, respectively. The explicit expression of the third degree
invariants is

C3 = z
(
x2

1,1 + x2
2,2

) − 2(p1q1x1,1 + p2q2x2,2 − zx1,2x2,1 + zx−1,2x1,−2) + p2
1x1,−1 + p2

2x2,−2

+ q2
1x−1,1 + q2

2x−2,2 − z(x−2,2x2,−2 + x−1,1x1,−1)

+ 2(q1q2x−1,2 + p1p2x1,−2 − p1q2x2,1 − p2q1x1,2). (33)

The fifth degree C5 contains 73 terms, for which reason we omit it here. The Casimir operators
are again obtained using the symmetrization map S of (5).

3. The inhomogeneous algebras Isp(2N , R)

The previous formula (28) constitutes a simplification of determinant (26) used to determine the
Casimir operators of wsp(N, R), but its real interest lies in its application to the computation
of the invariants of the inhomogeneous Lie algebras Isp(2N, R), by virtue of the simple
Inönü–Wigner contraction3

wsp(N, R) � Isp(2N, R) ⊕ R (34)

determined by the change of basis

X′
i,j = Xi,j , i, j = −N, . . . ,−1, 1, . . . , N; I

′ = I (35)

3 For the definition of simple IW-contraction used here see e.g. [21].
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P ′
i = 1√

t
Pi, i = 1, . . . , N; Q′

i = 1√
t
Qi, i = 1, . . . , N (36)

for t → ∞, but this process rapidly becomes tedious with large N. It is therefore convenient to
develop a direct method to obtain the Casimir operators, independently of the limiting process
of (35) and (36). These algebras have, as is known, N independent Casimir operators [22].

Proposition 3. Let N � 2. Then the Casimir operators C2k of Isp(2N, R) are given by the
coefficients of the polynomial

|C − T I d2N+1| + |A − T I d2N |T =
N∑

k=1

C2k+1T
2N+1−2k, (37)

where

C =




x1,1 · · · x1,N −x−1,1 · · · −x−1,N p1T

...
...

...
...

...

xN,1 · · · xN,N −x−1,N · · · −x−N,N pNT

x1,−1 · · · x1,−N −x1,1 · · · −xN,1 q1T

...
...

...
...

...

x1,−N · · · xN,−N −x1,N · · · −xN,N qNT

−q1 · · · −qN p1 · · · pN 0




. (38)

Moreover deg C2k+1 = 2k + 1.

Proof. The proof is essentially the same as that of proposition 2. By the contraction, the
invariants of the inhomogeneous algebras are obtained from the limit for t → ∞ of the
invariants of wsp(N, R), and are given by:

lim
t→∞

1

t

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zx1,1 − tp1q1 − T · · · zx1,N − tp1qN −zx−1,1 + tp2
1 · · · −zx−1,N + tp1pN

...
...

...
...

zxN,1 − tpNq1 · · · zxN,N − tpNqN − T −zx−1,N + tp1q1 · · · −zx−N,N + tp2
N

zx1,−1 − tq2
1 · · · zx1,−N − tq1qN −zx1,1 + tp1q1 − T · · · −zxN,1 + tpNq1

...
...

...
...

zx1,−N − tq1qN · · · zxN,−N − tq2
N −zx1,N + tp1qN · · · −zxN,N + tpNqN − T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(39)

Reducing the determinant by standard methods and taking the limit, we obtain the
following sum:

N∑
j=1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zx1,1 − T · · · zx1,j−1 −p1qj zx1,j+1 · · · zx1,N −zx−1,1 · · · −zx−1,N

...
...

...
...

...
...

...

zxN,1 · · · zxN,j−1 −pNqj zxN,j+1 · · · zxN,N − T −zx−1,N · · · −zx−N,N

zx1,−1 · · · zx1,−j+1 −q1qj zx1,−j−1 · · · zx1,−N −zx1,1 − T · · · −zxN,1

...
...

...
...

...
...

...

zx1,−N · · · zxj−1,−N −qNqj zxj+1,−N · · · zxN,−N −zx1,N · · · −zxN,N − T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
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+
N∑

j=1

×

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

zx1,1 − T · · · zx1,N −zx−1,1 · · · −zx−1,j−1 p1pj −zx−1,j+1 · · · −zx−1,N

...
...

...
...

...

zxN,1 · · · zxN,N − T −zx−1,N · · · −zx−N,j−1 pNpj −zx−N,j+1 · · · −zx−N,N

zx1,−1 · · · zx1,−N −zx1,1 − T · · · −zxj−1,1 p1qj −zxj+1,1 · · · −zxN,1

...
...

...
...

zx1,−N · · · zxN,−N −zx1,N · · · −zxj−1,N pNqj −zxj+1,N · · · −zxN,N − T

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

(40)

This sum is very similar to that of (27), up to the fact that here all involved determinants have
a column whose entries are products of the variables pi and qj associated with the standard
representation �ω1 of sp(2N, R). Expanding the sum, we obtain a polynomial:

N∑
k=1

z2k−1C2k+1T
2N−2k, (41)

where the C2k+1 are homogeneous polynomials of degree 2k +1. The invariants of Isp(2N, R)

are given by the C2k+1, while z is the invariant of the direct summand R of the contraction.
If we now expand the determinant |C − T I d2n+1| (compare with (27)), we get the

decomposition

|C − T I d2N+1| = −T


|(C − T I d2N+1)2N+1,2N+1| +

N∑
j=1

(−1)2N+1+j qj |(C − T I d2N+1)2N+1,j |



+


 N∑

j=1

(−1)3N+1+jpj |(C − T I d2N+1)2N+1,N+j |

 T . (42)

Proceeding as before, it is not difficult to see that the sum
N∑

j=1

((−1)2N+1+j qj |(C − T I d2N+1)2N+1,j | + (−1)3N+1+jpj |(C − T I d2N+1)2N+1,N+j |))T (43)

coincides with the sum (40) when we set z = 1. The remaining summand |(C −
T I d2N+1)2N+1,2N+1| is nothing but the characteristic polynomial of the matrix A of sp(2N, R)

associated with the standard representation (see (19)) multiplied by T. Therefore the sum

|C − T I d2N+1| + |A − T I d2N |T =
N∑

k=1

C2k+1T
2N+1−2k,

gives the Casimir operators of the inhomogeneous algebra. �
The advantage of this determinantal procedure for the invariants of sp(2N, R) in

comparison with the contraction or embedding methods usually applied in the literature is
remarkable, since we are only using the structure tensor of the algebra, and not specific
realizations of it.

As examples, we evaluate the invariants of the inhomogeneous algebras Isp(N, R) for
N = 1, 2. In the first case, the only invariant is given by

|C − T I d3| + |A− T I d2| =
∣∣∣∣∣∣
x1,1 − T −x−1,1 p1T

x1,−1 −x1,1 − T q1T

−q1 p1 −T

∣∣∣∣∣∣ + T

∣∣∣∣x1,1 − T −x−1,1

x1,−1 −x1,1 − T

∣∣∣∣ = C3T ,
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where

C3 = x1,2q
2
1 + x2,1p

2
1 − 2x1,1p1q1. (44)

We now apply the symmetrization map S to recover the Casimir operator:

S(C3) =
(
X1,2Q

2
1 + Q1X1,2Q1 + Q2

1X1,2
)

3
+

(
X2,1P

2
1 + P1X2,1P1 + P 2

1 X2,1
)

3

− (X1,1P1Q1 + Q1P1X1,1 + X1,1Q1P1 + P1Q1X1,1 + Q1X1,1P1 + P1X1,1Q1)

3
.

(45)

Observe that this operator is the difference of (32) and the operator of sp(2, R). For the
inhomogeneous algebra Isp(4, R) formula (37) gives two invariants:

C3 = −2(p1q1x1,1 + p2q2x2,2 − zx1,2x2,1 + zx−1,2x1,−2) + p2
1x1,−1 + p2

2x2,−2

+q2
1x−1,1 + q2

2x−2,2 + 2(q1q2x−1,2 + p1p2x1,−2 − p1q2x2,1 − p2q1x1,2), (46)

and

C5 = (
x2.2(x1,−1x2,2 − 2x2,1x1,−2) + x−2,2

(
x2

1,−2 − x1,−1x2,−2
)

+ x2
2,1x2,−2

)
p2

1

+
(−2x1,1x1,−2x1,2 + x1,−1x

2
1,2 + x2

1,−2x−1,1 − x1,−1x2,−2x−1,1 + x2
1,1x2,−2

)
p2

2

+
(
x2

2,2x−1,1 − 2x1,2x−1,2x2,2 + x2,−2x
2
−1,2 − x2,−2x−1,1x−2,2 + x2

1,2x−2,2
)
q2

1

+
(
x1,−1x

2
−1,2 + x2

2,1x−1,1 − x1,−1x−1,1x−2,2 − 2x1,1x−1,2x2,1 + x2
1,1x−2,2

)
q2

2

+ 2(x2,1(x1,1x2,2 + x1,−2x−1,2 − x2,1x1,2) + x−2,2(x1,−1x1,2 − x1,1x1,−2)

− x1,−1x2,2x−1,2)p1q2 + 2(x2,2(x2,1x1,2 − x1,1x2,2 + x1,−2x−1,2)

+ x−2,2(x1,1x2,−2 − x1,−2x1,2) − x2,1x2,−2x−1,2)p1q1

+ 2(x1,−2(x2,1x1,2 − x1,−2x−1,2 + x1,1x2,2) + x2,−2(x1,−1x−1,2 − x1,1x2,1)

− x1,−1x1,2x2,2)p1p2 + 2(x−1,2(x1,1x2,2 − x1,−2x−1,2 + x2,1x1,2)

+ x−1,1(x1,−2x−2,2 − x2,1x2,2) − x1,1x1,2x−2,2)q1q2

+ 2(x1,1(x1,2x2,1 + x1,−2x−1,2 − x1,1x2,2) + x−1,1(x1,−1x2,2 − x2,1x1,−2)

− x1,−1x1,2x−1,2)p2q2 + 2(x1,2(x1,−2x−1,2 + x1,1x2,2 − x2,1x1,2)

+ (x2,1x2,−2 − x1,−2x2,2)x−1,1 − x1,1x2,−2x−1,2)p2q1. (47)

Symmetrizing these functions we obtain two independent Casimir operators of Isp(4, R).

4. Relation of C to a faithful representation of Isp(2N , R)

Formula (37) for the invariants of the Lie algebras Isp(2N, R) is of special interest, not only
because of its simplicity, but also because, in a certain sense, the matrix C of (38) used for its
computation is related to a faithful representation of the inhomogeneous algebras.

Proposition 4. For N � 2 the matrix C of (38) decomposes as

C = MN

(
I d2N 0

0 T

)
+




0 · · · 0 0 · · · 0 0
0 · · · 0 0 · · · 0 0
0 · · · 0 0 · · · 0 0
0 · · · 0 0 · · · 0 0

−q1 · · · −qN p1 · · · pN 0


 , (48)
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where

MN :=




x1,1 · · · x1,N −x−1,1 · · · −x−1,N p1

...
...

...
...

...

xN,1 · · · xN,N −x−1,N · · · −x−N,N pN

x1,−1 · · · x1,−N −x1,1 · · · −xN,1 q1

...
...

...
...

...

x1,−N · · · xN,−N −x1,N · · · −xN,N qN

0 · · · 0 0 · · · 0 0




. (49)

Moreover, MN defines a (2N + 1)-dimensional faithful representation of Isp(2N, R).

Proof. The proof of the decomposition follows at once. Let Ii,j be the elementary matrix
whose entry is 1 in the ith row and j th column, and zero elsewhere. For generators (9)–(11)
define the mapping4

�(Xi,j ) = Iij − Ij+N,i+N ; 1 � i � j � N

�(X−i,i ) = −2Ii,N+i; �(Xi,−i ) = 2IN+i,i; 1 � i � N

�(X−i,j ) = −(Ii,N+j + Ij,N+i ); 1 � i < j � N

�(Xi,−j ) = (IN+i,j + IN+j,i ); 1 � i < j � N

�(P ′
i ) = Ii,2N+1; �(Q′

i ) = IN+i,2N+1; 1 < i � N.

(50)

It is straightforward to verify that the matrix commutator satisfies relations (12)–(17), thus
define a representation of Isp(2N, R). Since no element is mapped onto the zero matrix, � is
faithful. �

We thus recover the usual standard representation of Isp(2N, R). Equation (37) can be
seen as the adaptation of the classical Gel’fand method to the computation of invariants of
inhomogeneous algebras.

5. The extended Schrödinger algebra

In this section we focus on an extremely important Lie algebra that arises as a subalgebra
of the semidirect product wsp(N, R), the Schrödinger algebra Ŝ(N). First introduced in
[4, 23], the invariance algebra of the Schrödinger equation in (N + 1)-dimensional space
time has attracted considerable interest in recent physical literature ([24, 25] and references
therein). The Schrödinger algebra Ŝ(N) in (N +1)-dimensional spacetime is a 1

2 (N2 +3N +8)-
dimensional Lie algebra with non-trivial commutators

[Jµν, Jλσ ] = δµλJνσ + δνσ Jµλ − δµσ Jνλ − δνλJµσ ,

[Jµν, Rλ] = δµλRν − δνλRµ, [Jµν,Gλ] = δµλGν − δνλGµ,

[Pt ,Gµ] = Pµ, [K,Rµ] = −Gµ,

[D,Gµ] = Gµ, [D,Rµ] = −Rµ,

[D,K] = 2K, [D,Pt ] = −2Pt ,

[K,Pt ] = −D. [Rµ,Gν] = δµνM

(51)

4 According to contraction (35), (36), the brackets for the generators P ′
i and Q′

i of Isp(2N, R) are given by

[P ′
i , Q

′
i ] = lim

t→∞[P ′
i , Q

′
i ] = 0.



A new matrix method for the Casimir operators of the Lie algebras wsp(N, R) and Isp(2N, R) 4199

over the basis {Jij , Rk,Gk,K,D,Pt ,M}, where Jµν + Jνµ = 0 are rotations, Rµ the spatial
translation generators, Pt the time translation, Gµ special Galilei transformations, D the
generator of scale transformations, K the generator of Galilean conformal transformations and
M commutes with all generators [4, 23]. The quotient by the centre, generated by M, gives the
unextended Schrödinger algebra S(N). It follows from the brackets that Ŝ(N) is the semidirect
product of a semisimple Lie algebra, isomorphic to so(N) ⊕ sl(2, R), with the Heisenberg
algebra hN of dimension (2N + 1), i.e., its Levi decomposition is (so(N) ⊕ sl(2, R))

−→⊕ RhN ,
where the representation R can be identified with

(
D 1

2
⊗ �

) ⊕ D0. Here D 1
2
⊗ � is the tensor

product of the standard representations D 1
2

of sl(2, R) and � of so(N), respectively [25], and

D0 is the trivial representation. Moreover, Ŝ(N) is isomorphic to a subalgebra of wsp(N, R)

by means of the homomorphism of Lie algebras defined by

�(Jµν) = Xµ,ν − Xν,µ, �(Gµ) = Pµ, �(Rµ) = Qµ, 1 � µ < ν � N,

(52)

�(K) = 1

2

N∑
µ=1

X−µ,µ, �(Pt ) = 1

2

N∑
µ=1

Xµ−,µ, �(D) =
N∑

µ=1

Xµ,µ. (53)

For N � 2 the inclusion is strict, while Ŝ(1) and wsp(1, R) are isomorphic.
One can ask whether the matrix method exhibited for the symplectic algebras can be

enlarged and adapted to compute the Casimir operators of the Schrödinger algebra. The
answer is in the affirmative, but due to the structure of the Levi part, we will have to divide
the method into two steps. To see why this division is convenient, we consider the system of
PDEs (4) corresponding to Ŝ(N) over the preceding basis:

Ĵ µνF = jνσ

∂F

∂jµσ

− jνλ

∂F

∂jλµ

− jµσ

∂F

∂jνσ

+ jµλ

∂F

∂jλν

+ rν

∂F

∂rµ

− rµ

∂F

∂rν

+ gν

∂F

∂gµ

− gµ

∂F

∂gν

= 0

(54)

D̂F = 2k
∂F

∂k
− 2pt

∂F

∂pt

+ gµ

∂F

∂gµ

− rµ

∂F

∂rµ

= 0 (55)

K̂F = −2k
∂F

∂d
− d

∂F

∂pt

− gµ

∂F

∂rµ

= 0 (56)

P̂tF = 2pt

∂F

∂d
+ d

∂F

∂k
+ rµ

∂F

∂gµ

= 0 (57)

ĜµF = −gν

∂F

∂jµν

+ gν

∂F

∂jνµ

− rµ

∂F

∂pt

− gµ

∂F

∂d
− m

∂F

∂rµ

= 0 (58)

R̂µF = −rν

∂F

∂jµν

+ rν

∂F

∂jνµ

+ gµ

∂F

∂k
+ rµ

∂F

∂d
+ m

∂F

∂gµ

= 0, (59)

where 1 � µ, ν, λ, σ � N . We will see that a maximal set of independent Casimir invariants
of (54)–(59) can be obtained from the invariants of two particular subalgebras. Consider
g1 = so(N)

−→⊕ 2�hN and g2 = sl(2, R)
−→⊕ nD 1

2
hN , which are the semidirect products of the

Heisenberg algebra with the components of the Levi part of Ŝ(N). Observe that for N = 2 the
algebra g1 is solvable since so(2) is Abelian. The following result shows that the Schrödinger
algebra has invariants in common with the subalgebras g1 and g2.

Lemma 1. For any N � 2, the invariants of the Lie algebras g1 and g2 are also invariants of
the Schrödinger algebra Ŝ(N).



4200 R Campoamor-Stursberg

Proof. For the Lie algebra g1, the invariants are obtained from the system of PDEs:

Ĵ µνF = jνσ

∂F

∂jµσ

− jνλ

∂F

∂jλµ

− jµσ

∂F

∂jνσ

+ jµλ

∂F

∂jλν

+ rν

∂F

∂rµ

− rµ

∂F

∂rν

+ gν

∂F

∂gµ

− gµ

∂F

∂gν

= 0

(60)

ĜµF = −gν

∂F

∂jµν

+ gν

∂F

∂jνµ

− m
∂F

∂rµ

= 0 (61)

P̂µF = −rν

∂F

∂jµν

+ rν

∂F

∂jνµ

+ m
∂F

∂gµ

= 0. (62)

Observe that the equations corresponding to the rotations are the same as (54), while those
corresponding to the generators Gµ and Rµ are a summand of equations (58), respectively
(59). Thus any solution of (60)–(62) is a particular solution of (54)–(59). Since the algebra
g1 is nothing but the semidirect product of the orthogonal algebra so(N) with a Heisenberg
algebra hN , it follows from Quesne’s theorem that for N � 3 the number of Casimir operators
is given by 1 +

[
N
2

]
. For N = 2 it is trivial to see that N (g1) = 2. The corresponding analysis

for the subalgebra g2 is very similar. The system associated with g2 is:

D̂F = 2k
∂F

∂k
− 2pt

∂F

∂pt

+ gµ

∂F

∂gµ

− rµ

∂F

∂rµ

= 0 (63)

K̂F = −2k
∂F

∂d
− d

∂F

∂pt

− gµ

∂F

∂rµ

= 0 (64)

P̂tF = 2pt

∂F

∂d
+ d

∂F

∂k
+ rµ

∂F

∂gµ

= 0 (65)

ĜµF = −rµ

∂F

∂pt

− gµ

∂F

∂d
− m

∂F

∂rµ

= 0 (66)

R̂µF = gµ

∂F

∂k
+ rµ

∂F

∂d
+ m

∂F

∂gµ

= 0. (67)

Again any solution of this system provides a particular solution of (54)–(59). Since
rank (sl(2, R)) = 1, the algebra g2 has two invariants for any N. Observe that the solution z is
a common invariant to both subalgebras. �

This lemma shows that we obtain 2 +
[

N
2

]
independent invariants for the Schrödinger

algebra. It remains to prove these form a complete set of invariants, i.e., there are no additional
independent solutions of system (54)–(59).

Lemma 2. For any N � 1 the Schrödinger algebra Ŝ(N) satisfies the equality N (Ŝ(N)) =
2 +

[
N
2

]
.

Proof. It suffices to prove the existence of a suitable non-trivial contraction having 2 +
[

N
2

]
invariants. Let � be the automorphism of Ŝ(N) defined by

�(D) = 1

t2
D, �(K) = 1

t
K, �(Pt ) = 1

t
Pt , (68)

�(Jµν) = Jµν, �(Gµ) = Gµ, �(Rµ) = Rµ. (69)

Since only the generators of sl(2, R) are being rescaled, the subalgebra g1 will be invariant
by the corresponding contraction, while for t → ∞ the sl(2, R) subalgebra contracts onto the
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three-dimensional Heisenberg algebra. Therefore the contraction defined by � is isomorphic
to the direct sum (so(N)

−→⊕ 2�hN, ) ⊕ h1. By the properties of contractions we have

2 +

[
N

2

]
� N (Ŝ(N)) � N ((so(N)

−→⊕ 2�hN,) ⊕ h1). (70)

But the number of invariants of the contracton is given by

N ((so(N)
−→⊕ RhN) ⊕ h1) = N (so(N)

−→⊕ 2�hN) + 1, (71)

and by the preceding lemma we have N (so(N)
−→⊕ RhN) = 1 +

[
N
2

]
. �

With these results we have reduced the problem of finding the Casimir operators of the
Schrödinger algebra to that of finding the invariants of the subalgebras g1 and g2. For the first
case we will develop a matrix method similar to that given for the symplectic algebras, while
for g2 the result follows at once from the determinantal formulae developed in [6].

Proposition 5. For any N � 2, the noncentral Casimir operators C2k+2
(
1 � k �

[
N
2

])
of the

Lie algebra so(N)
−→⊕ 2�hN are given by the coefficients of the polynomial

|DN − T I dN+2| = T N+2 +
[ N

2 ]∑
k=1

T N+2−2km2k−2C2k+2, (72)

where

DN =




0 −mj12 · · · −mj1N g1T r1T

mj12 0 · · · −mj2N g2T r2T

: : : : :
mj1N mj2N · · · 0 gNT rNT

−r1 −r2 · · · −rN 0 0
g1 g2 · · · gN 0 0




. (73)

Moreover, deg C2k+2 = 2k + 2 for any k.

Proof. The argument is still the same as in propositions 1 and 2. Gel’fand proved in [7] that
the Casimir operators of the orthogonal algebras so(N) are obtained from the characteristic
polynomial of the matrix

MN(jµν) =




0 −j12 · · · −j1N

j12 0 · · · −j2N

: : :
j1N j2N · · · 0


 . (74)

Now we search for operators J ′
µν in the enveloping algebra of so(N)

−→⊕ 2�hN that span an
algebra isomorphic to so(N) and commute with all generators Gµ and Rµ. This can be done
by using the reduction method developed in [13], and we obtain:

J ′
µνM + (GµRν − RµGν), 1 � µ < ν � N. (75)

Considering representation (3), these operators correspond to the variables

j ′
µνm + (gµrν − rµgν), 1 � µ < ν � N. (76)

Replacing jµν in (74) by the new variables (76), we obtain the invariants of so(N)
−→⊕ 2�hN

from the characteristic polynomial |MN(j ′
µν)−T I dN |. Now this determinant can be simplified
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using elementary techniques, and after some manipulation it follows that

T 2|MN(j ′
µν) − T I dN | − |DN(j ′

µν) − T I dN+2| = 0. (77)
�

The analogous matrix formula for the invariants of g2 is merely a reformulation of the
formula developed in [6], so we omit the detailed proof.

Proposition 6. For any N � 1 the noncentral Casimir operators of sl(2, R)
−→⊕ RhN are given

by the coefficients of the polynomial

|EN − T I dN+2| = T N+2 + C ′
4T

N, (78)

where

EN =




md −2mk g1T · · · gNT

2mpt −md r1T · · · rNT

−r1 g1 0 · · · 0
: : 0 · · · 0

−rN gN 0 · · · 0


 . (79)

Morover C ′
4 is a homogeneous polynomial of degree 4.

These formulae have an important consequence: for any N � 2 the Schrödinger algebra
Ŝ(N) has two Casimir operators of order four, namely C4 and C ′

4. For this reason the Casimir
operators will not be expressible in terms of a unique matrix, but using both matrices DN

and En. Taking together these results, the procedure to determine a maximal set of Casimir
operators for the Schrödinger algebra Ŝ(N) can be summarized in the following steps:

(i) Determine the
[

N
2

]
coefficients C2k+2 of the polynomial |DN − T I dN+2| = T N+2 +∑[ N

2 ]
k=1 T N+2−2km2k−2C2k+2,

(ii) Determine the coefficient C ′
4 of the polynomial |EN − T I dN+2| = T N+2 + C ′

4T
N ,

(iii) Take the central variable z,
(iv) Symmetrize the functions C2k+2, C

′
4 and z using the mapping S of (5).

As examples we compute the invariants of the Schrödinger algebra Ŝ(N) for N = 2, 3.
For the nine-dimensional algebra Ŝ(2) we have N (Ŝ(2)) = 3. The non-central are obtained
using formulae (72) and (78). Expanding the determinants we find the polynomials

C4 = (j12m + (g1p2 − g2p1))
2 (80)

C ′
4 = (g1p2 − g2p1)

2 − m2(d2 − 4kpt ) − 2mpt

(
g2

1 + g2
2

)
− 2mk

(
p2

1 + p2
2

) − 2md(p1g1 + p2g2). (81)

It follows in particular that C4 is a square, so that Ŝ(2) has an invariant of degree two.
The Lie algebra Ŝ(3) also has three independent invariants, as follows from lemma 2. In

this case, the formulae provide the following non-central invariants:

C4 = (g1p2 − g2p1)
2 + (g1p3 − g3p1)

2 + (g2p3 − g3p2)
2 + m2(j 2

12 + j 2
13 + j 2

23)

− 2m(j12(g1p2 − g2p1) + j13(g1p3 − g3p1) + j23(g2p3 − g3p2)). (82)

C ′
4 = (g1p2 − g2p1)

2 + (g1p3 − g3p1)
2 + (g2p3 − g3p2)

2 + m2(4kpt − d2)

− 2m
(
k
(
p2

1 + p2
2 + p2

3

)
+ pt

(
g2

1 + g2
2 + g2

3

)
+ d(p1g1 + p2g2 + p3g3)

)
. (83)
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6. Applications to other inhomogeneous Lie algebras

The preceding sections show how the Casimir operators of the semidirect products wsp(N, R)

and the inhomogeneous Lie algebras Isp(2N, R) can be obtained easily by evaluation of
certain determinants. In this section we show that the matrix method can be extended to other
algebras which are neither semidirect products with a Heisenberg algebra nor contractions of
such products. This constitutes an evidence that the procedure is not dependent on the special
case of the algebras wsp(N, R) treated, but holds for a wide class of semidirect products.
Recall that the main idea in the wsp(2N, R) case is the existence of a copy of the Levi part
sp(2N, R) in the enveloping algebra of wsp(N, R), while in the second we used the fact
that Isp(2N, R) is obtained as a direct summand of a certain Inönü–Wigner contraction of
wsp(N, R).

Now let us consider the kinematical algebras in (3 + 1) dimensions [26]. Over the
generators {Ji,Ki, Pi,H }1�i�3 the nonzero brackets of the Poincaré Lie algebra Iso(3, 1) are
given by:

[Ji, Jj ] = εijkJk; [Ji, Pj ] = εijkPk; [Ji,Kj ] = εijkKk;
[H,Ki] = Pi; [Ki,Kj ] = −εijkJk; [Pi,Ki] = H.

(84)

In particular, {Ji,Ki} generate the Lorentz algebra, whose Casimir operators are easily
obtained using the Gel’fand method [7, 27]. If

Â =




0 j3 j2 −k1

−j3 0 j1 k2

−j2 −j1 0 −k3

−k1 k2 −k3 0


 , (85)

then

|Â − T I d4| = T 4 + (jαjα − kαkα)T 2 − (jαkα)2. (86)

Since the direct sum of the Poincaré algebra and R cannot be obtained from an eleven-
dimensional perfect Lie algebra with Heisenberg radical, the method of the enveloping
algebra combined with contractions is not applicable to the inhomogeneous Lorentz group.
However, the Casimir operators can still be obtained directly using the preceding matrix
method. Considering the matrix

D =




0 j3 j2 −k1 p1T

−j3 0 j1 k2 −p2T

−j2 −j1 0 −k3 p3T

−k1 k2 −k3 0 hT

p1 −p2 p3 −h 0


 (87)

and the determinant |D − T I d5|, it can easily be verified that the polynomial

P = |D − T I d5| − T |Â − T I d4| = T 4(h2 − pαpα) + {pαpα(kβkβ + kγ kγ − jαjα)}T

+ T


−2(jαpajβpβ + pαkαpβkβ) + h2jαjα + 2h

∣∣∣∣∣∣
k1 k2 k3

p1 p2 p3

j1 j2 j3

∣∣∣∣∣∣

 , (88)

where α 
= β 
= γ , allows us to recover the familiar Casimir operators m2 and W 2 = WµWµ

determining the mass and spin of a particle, where Wµ is the Pauli–Lubanski spin operator.
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Again, we have that the matrix D decomposes as

D =




0 j3 j2 −k1 p1

−j3 0 j1 k2 −p2

−j2 −j1 0 −k3 p3

−k1 k2 −k3 0 h

0 0 0 0 0







1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 T


 +




0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
p1 −p2 p3 −h 0


 ,

(89)

where the first matrix on the right-hand side defines a faithful representation of the Poincaré
algebra. This example shows that the matrix method can be applied to a more wide class
of algebras, and does not constitute merely a reformulation of the method developed in [12]
for the invariants of semidirect products of simple and Heisenberg Lie algebras. Obviously
equation (45) could also be used to determine the invariants of the Galilei algebra G(2) via
the contraction

Iso(3, 1) � G(2) (90)

determined by the change of basis

Ki = 1√
t
Ki, Pi = Pi√

t
, i = 1, . . . , 3. (91)

However, the limiting procedure can again be avoided, and the Casimir operators result from
the following determinants:

P(kα, pβ) :=

∣∣∣∣∣∣∣∣∣∣

−T 0 0 −k1 p1T

0 −T 0 k2 −p2T

0 0 −T −k3 p3T

−k1 k2 −k3 −T hT

p1 −p2 p3 −h −T

∣∣∣∣∣∣∣∣∣∣
−

∣∣∣∣∣∣∣∣
−T 0 0 −k1

0 −T 0 k2

0 0 −T −k3

−k1 k2 −k3 −T

∣∣∣∣∣∣∣∣
= −T 2(T 2pαpα + 2pαkαpβkβ + kαkapβpβ). (92)

The independence from the variables jα spanning the so (3)-Levi part follows at once from
the space isotropy [9]. This implies moreover that a matrix decomposition similar to that of
(48) is not associated with a faithful representation of the Galilei algebra, due to the absence
of the variables corresponding to the rotation generators Jα .

7. Applications to the missing label problem

As is known, irreducible representations of a semisimple Lie algebra are labelled unambigously
by the eigenvalues of Casimir operators. In a more general frame, irreducible representations
of a Lie algebra g are labelled using the eigenvalues of its generalized Casimir invariants [28].
By a classical result due to Racah [29] and formula (6), the number of internal labels needed
equals

i = 1
2 (dim g − N (g)). (93)

When a subalgebra h is used to label the basis states of g, it provides 1
2 (dim h + N (h) + l′

labels, where l′ is the number of invariants of g that depend only on variables of the subalgebra
h [28]. In order to label irreducible representations of g uniquely, it is therefore necessary to
find

n = 1
2 (dim g − N (g) − dim h − N (h)) + l′ (94)
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additional operators, which are usually called missing label operators. These are traditionally
found by integrating the equations of system (4) corresponding to the subalgebra generators.
The total number of available operators of this kind is easily shown to be m = 2n.

The matrix method developed here can not only be used to analyse different
inhomogeneous algebras and their contractions, but also has potential interest in the analysis
of the missing label problem [30]. To this extent, consider the symplectic algebra sp(4, R)

generated by the operators
{
a
†
i aj , a

†
i a

†
j , aiaj

}
for i, j = 1, 2 and the subalgebra sl(2, R)

generated by
{
a
†
1a1, a

†
1a

†
1, a1a1

}
. According to (94), the number of missing labels for the

chain sl(2, R) ↪→ sp(4, R) is given by

n = 1
2 (dim sp(4, R) − N (sp(4, R)) − dim sl(2, R) − N (sl(2, R))) = 2, (95)

there are thus four available missing label operators. Using the basis (9)–(11), these operators
are obtained from the subsystem formed by the following equations:

2x−1,1
∂F

∂x−1,1
− 2x1,−1

∂F

∂x1,−1
− x−1,2

∂F

∂x−1,2
− x1,−2

∂F

∂x1,−2
+ x1,2

∂F

∂x1,2
− x2,1

∂F

∂x2,1
= 0

(96)

−2x−1,1
∂F

∂x1,1
− 4x1,1

∂F

∂x1,−1
− 2x1,2

∂F

∂x1,−2
− 2x−1,2

∂F

∂x2,1
= 0 (97)

2x1,−1
∂F

∂x1,1
+ 4x1,1

∂F

∂x−1,1
+ 2x2,1

∂F

∂x−1,2
+ 2x1,−2

∂F

∂x1,2
= 0. (98)

Instead of integrating it (although this case is extremely simple), we observe that the variables
x2,2, x−2,2 and x2,−2 do not appear in the differentials ∂

∂xi,j
,5 thus can be taken as solutions of

(96)–(98). The fourth independent solution is obtained from the characteristic polynomial of
the matrix

M =




x1,1 x1,2 −x−1,1 −x−1,2

x2,1 0 −x−1,2 0
x1,−1 x1,−2 −x1,1 −x2,1

x1,−2 0 −x1,2 0


 . (99)

Observe that M is nothing but the matrix A of (19), but where the entries corresponding to
x2,2, x−2,2 and x2,−2 have been replaced by zero. Now

|M − T I d4| = T 4 +
(
2(x1,−2x−1,2 − x1,2x2,1) +

(
x1,−1x−1,1 − x2

1,1

))
T 2

+ (x1,−2x−1,2 − x1,2x2,1)
2. (100)

Taking I1 = (x1,−2x−1,2 − x1,2x2,1), we obtain a fourth independent missing label operator.
Observe further that the coefficient of T 2 is nothing but(

2(x1,−2x−1,2 − x1,2x2,1) +
(
x1,−1x−1,1 − x2

1,1

)) = 2I1 + C2, (101)

where C2 is the quadratic Casimir operator of the sl(2, R) subalgebra. A more interesting
example is the chain sp(4, R) ↪→ sp(6, R). In this case, there are m = 6 available missing

5 This is obvious, since the operators X2,2 = a
†
2a2, X−2,2 = a

†
2a

†
2 and X2,−2 = a2a2 generate an independent copy

of sl(2, R).
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operators, three of which can be taken to be the variables x3,3, x−3,3 and x3,−3. The other three
operators can be obtained from the characteristic polynomial of the matrix

M1 =




x1,1 x1,2 x1,3 −x−1,1 −x−1,2 −x−1,3

x2,1 x2,2 x2,3 −x−1,2 −x−2,2 −x−2,3

x3,1 x3,2 0 −x−1,3 −x−2,3 0
x1,−1 x1,−2 x1,−3 −x1,1 −x2,1 −x3,1

x1,−2 x2,−2 x2,−3 −x1,2 −x2,2 −x3,2

x1,−3 x2,−3 0 −x1,3 −x2,3 0




. (102)

We obtain

|M4 − T I d6| = T 6 + C2T
4 + C4T

2 + C6, (103)

where C2i is a polynomial of degree 2i for i = 1, 2, 3. Further, for example,

C2 = 2(x1,−3x−1,3 + x2,−3x−2,3 − x3,1x1,3 − x2,3x3,2) + P2, (104)

where P2 is the quadratic Casimir operator of sp(4, R) over the given basis. The first nontrivial
missing label operator can thus be taken as L1 = C2 − P2. Simplifying C4 and C6 in an
analogous manner, we obtain two other independent missing label operators of degrees four
and six, respectively. In general, such operators can be obtained whenever we consider a chain
k ↪→ g where the subsystem of (4) corresponding to the generators of k is not dependent on all
variables associated with the generators of the algebra g and there exist polynomial solutions6.

However, it must be observed that not all available missing label operators must arise by
this technique. This can easily be illustrated. Take again sp(4, R) and the two-dimensional
subalgebra g generated by X1,1 and X−1,1. Then the available missing label operators are
m = 6. They are obtained from equations (96) and (97). Again the equations do not depend
on x2,2, x−2,2 and x2,−2, so we can again use matrix (99). We thus obtain the polynomial of
(100):

T 4 +
(
2(x1,−2x−1,2 − x1,2x2,1) +

(
x1,−1x−1,1 − x2

1,1

))
T 2 + (x1,−2x−1,2 − x1,2x2,1)

2. (105)

Taking I1 = (x1,−2x−1,2 − x1,2x2,1), we obtain an independent missing label operator. Since
k has no invariants, the coefficient of T 2 in (105) provides another independent solution of
the system, namely I2 = x1,−1x−1,1 − x2

1,1, which could be taken as the fifth missing label
operator. But there is no possibility of obtaining a sixth independent operator by this method.

8. Conclusions

The main purpose has been to point out a formal matrix method to determine the Casimir
operators of the Lie algebras wsp(N, R) and Isp(2N, R). Traditionally the invariants of
the semidirect product wsp(N, R) are computed by exhibiting a copy of its Levi part in the
enveloping algebra, to which the classical formulae for sp(2N, R)-invariants is applied. The
method has been refined and simplified by constructing a (2N + 1) × (2N + 1)-matrix B
depending on a parameter T whose determinant |B − T I d2N+1| gives the invariants sought.
This procedure has the advantage of avoiding the step involving the new generators generating
the copy in the enveloping algebra, and seems more practical for obtaining explicit expressions
of the invariants. Taking into account the contraction wsp(N, R) � Isp(2N, R)⊕R, we have
obtained a similar matrix for the inhomogeneous symplectic algebras Isp(2N, R). With this
matrix, the corresponding Casimir operators can also be computed directly. The important

6 Taking the chain u(N) ↪→ sp(2N, R), we get no missing label operators, since the equations associated with the
generators of u(N) involve all generators of the symplectic algebra.
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fact is the parameter used in matrices also appears in the determinant, so that we cannot
speak strictly of characteristic polynomials. This is due to the non-semisimplicity of the
analysed algebras. However, for the inhomogeneous algebras Isp(2N, R), the method has
an interesting consequence, namely its relation to a faithful representation. The factorization
(48) can thus be interpreted as a kind of generalization of the traditional matrix methods for
the study of semisimple Lie algebras.

We have also enlarged and adapted our matrix approach to an important subalgebra
of wsp(N, R), the Schrödinger Lie algebra Ŝ(N). Since for this algebra the Levi part is
isomorphic to so(N)⊕ sl(2, R), the formula to obtain the Casimir invariants has to be divided
into steps, each of them corresponding to the semidirect product of the Heisenberg algebra
hN with the subalgebras so(N) and sl(2, R) of the Levi part. It has been shown that these
semidirect products determine the invariants of the Schrödinger algebra, and provide a maximal
set of independent invariants. Their determination has also been reduced to the expansion of
two determinants, providing an economical procedure to obtain the invariants of Ŝ(N).

Although the method arises primarily from the analysis of semidirect products of
symplectic algebras with Heisenberg algebras, it can also be applied to cases where the
intrinsic procedure of [12] is no longer valid, such as the kinematical algebras in (3 + 1)
dimensions. Under some circumstances we can still find a faithful representation of the Lie
algebra associated with the matrix giving the invariants. However, the existence of such a
representation can only be deduced when the Casimir operators are dependent on all generators
of the algebra, as shown by the example with the Galilei algebra.

Finally, we have constructed explicit examples that show how to apply the matrix method
to the study of the missing label problem. Although the validity of the argument depends
on the structure of the subalgebra chain k ↪→ g and the existence of polynomial missing
label operators, it provides useful results for low dimensional subalgebras k or special types
of immersions, like the chain sp(2N − 2, R) ↪→ sp(2N, R). Even if there are examples for
which the total number of available missing labels cannot be obtained by this application of
the matrix method, its simplicity makes it a technique worthy of consideration.
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